Overview on numerical studies of reconnection and dissipation in the solar wind

نویسندگان

  • S. Donato
  • S. Servidio
  • P. Dmitruk
  • F. Valentini
  • A. Greco
  • P. Veltri
  • M. Wan
  • M. A. Shay
  • P. A. Cassak
  • W. H. Matthaeus
چکیده

In this work, recent advances in numerical studies of local reconnection events in the turbulent plasmas are reviewed. Recently [1], the nonlinear dynamics of magnetic reconnection in turbulence has been investigated through high resolution numerical simulations. Both uid (MHD and Hall MHD) and kinetic (HybridVlasov) 2D simulations reveal the presence of a large number of X-type neutral points, where magnetic reconnection locally occurs. The associated reconnection rates are distributed over a wide range of values and they depend on the local geometry of the diffusion region. This new approach to the study of magnetic reconnection has broad applications to the turbulent solar wind (SW). Strong magnetic SW discontinuities are in fact strongly related to these intermittent processes of reconnection [2, 3]. Methods employed to identify sets of possible reconnection events along a one-dimensional path through the turbulent eld (emulating experimental sampling by a single detector in a highspeed ow) are here reviewed. These local reconnection/discontinuity events may be the main sites of heating and particle acceleration processes [4]. Results from hybrid-Vlasov kinetic simulations support these observations [5, 6]. In the turbulent regime, in fact, kinetic effects manifest through a deformation of the ion distribution function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity. These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature anisotropy, commonly observed in astrophysics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generation of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules

Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...

متن کامل

A Numerical Investigation on Aerodynamic Coefficients of Solar Troughs Considering Terrain Effects and Vortex Shedding

Recently, increase in the cost of fossil fuels and taking into consideration the environmental effects of exploiting them, caused many researchers and governments to find some ways to make use of renewable energies more cost-effectively. Solar energy is a category of renewable energies which could be harvested via several technologies. One of the most practical methods is using parabolic trough...

متن کامل

Mhd-driven Kinetic Dissipation in the Solar Wind and Corona

Mechanisms for the deposition of heat in the lower coronal plasma are discussed, emphasizing recent attempts to reconcile the Ñuid and kinetic perspectives. Structures at magnetohydrodynamic (MHD) scales may drive a nonlinear cascade, preferentially exciting high perpendicular wavenumber Ñuctuations. Relevant dissipative kinetic processes must be identiÐed that can absorb the associated energy ...

متن کامل

Damping of visco-resistive Alfven waves in solar spicules

Interaction of Alfven waves with plasma inhomogeneity generates phase mixing which can cause the dissipation of Alfven waves. We investigated the dissipation of standing Alfven waves due to phase mixing at the presence of steady flow and sheared magnetic field in solar spicules. Moreover, the transition region between chromosphere and corona was considered. Our numerical simulation showed that ...

متن کامل

Particle acceleration and reconnection in the solar wind

An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013